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Spectral Element Analysis for an Axially Moving 
Viscoelastic Beam 

Hyungmi Oh, Jooyong Cho, Usik Lee* 
Department o f  Mechanical Engineering, Inha University, 

253 Yonghyun-Dong, Nam-Ku,  Incheon 402-751, Korea 

In this paper, a spectral element model is derived for the axially moving viscoelastic beams 

subject to axial tension. The viscoelastic material is represented in a general form by using the 

one-dimensional constitutive equation of hereditary integral type. The high accuracy of the 

present spectral element model is verified first by comparing the eigenvalues obtained by the 

present spectral element model with those obtained by using the conventional finite element 

model as well as with the exact analytical solutions. The effects of viscoelasticity and moving 

speed on the dynamics of moving beams are then numerically investigated. 
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1. Introduct ion 

Above a certain critical moving speed, the 

moving structures such as the moving belts used 

in power transmissions may experience severe 

vibrations resulting in structural failures. Thus, 

the dynamics and stability of such structures have 

been studied extensively to ensure that they are 

under stable working conditions (Wickert and 

Mote, 1988). In most existing literatures, the ax- 

ially moving one-dimensional structures have 

been considered to be elastic and represented by 

the string models or the beam models. 

With the advancement of material technologies, 

new materials such as plastics, metallic or cera- 

mic reinforced composite materials and polymeric 

material are now widely used for moving belts. 

Such materials exert inherently viscoelastic be- 

havior which can be modeled by integral or dif- 

ferential type of constitutive equations. However, 
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there have been very limited number of studies 

on the moving structures of which material is 

viscoelastic. Fung et a1.(1997) is the first to in- 

vestigate the transverse vibration by using a 

standard linear solid model of hereditary integral 

type. Zhang and Zu (1998) adopted a Kevin 

model of differential type for the viscoelastic ma- 

terial of moving belt. Le-Ngoc and McCallion 

(1999) developed a dynamic stiffness model for 

the axially moving elastic string. Hou and Zu 

(2002) used a standard linear solid model of dif- 

ferential type to investigate nonlinear free oscil- 

lations. In the aforementioned references, the 

moving viscoelastic belts were all represented by 

string models. The beam model was used by 

Marynowski and Kapitaniak (2002) to investi- 

gate the stability and oscillations of an axially 

moving viscoelastic web by using the differential 

type of constitutive equations for the viscoelastic 

material. 

In the literature, various solution methods 

have been presented for the vibration analysis 

of linear viscoelastic structures; for instance, 

Galerkin method (e.g., Fung et al., 1997), Runge- 

Kutta method (e.g., Marynoski and Kapitaniak, 

2002), Laplace transform method (e.g., Flugge, 

1975), the correspondence and superposition 
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principles (e.g., Findley et al., 1976), Fourier 

transform method (e.g., Christensen, 1982), finite 

element method (e.g. White, 1986), and so lbrth. 

The spectral element method (SEM) has been 

well recognized as an exact solution method for 

the dynamic analysis of structures (Doyle, 1997 ; 

Lee and Lee ; 1998 ; Lee et al., 2001 ; Oh et al., 

2004). The spectral element matrix is formulated 

by using the frequency-dependent shape func- 

tions satisfying structural dynamic equations. 

Thus, one can use only one finite element for a 

uniform structure, regardless of its length. The 

conventional finite element assembly procedure 

can be equally used in SEM to obtain the global 

system equation for a complete structure. In 

SEM, the dynamic responses in frequency- and 

time-domains are computed very efficiently by 

using the fo rward-FFT (simply, FFT)  and 

inverse-FFT (simply, IFFT)  algorithms. Because 

the SEM is a frequency-domain method, it seems 

to be best fit for the viscoelastic structures of 

which material properties are most often extract- 

ed indirectly from the experimental forced vibra- 

tion responses given in the form of receptance 

frequency response functions (FRF)  (Dalenbring, 

2003). 

Thus, the purposes of this paper are to develop 

a spectral element model for the axially moving 

viscoelastic beams subject to axial tension, and to 

investigate the effects of viscoelasticity and mov- 

ing speed on the vibration of an example moving 

viscoelastic beam. 

2. Equation of Motion 

2.1 Const i tut ive  equation 

The three-dimensional constitutive equation 

for an integral type anisotropic linearly visco- 

elastic material is given by (Christensen, 1982) 

= r,~k,(t) * de~,(t) 
(1) 

where oo(t) is the stress history tensor, e o ( t )  
is the strain tensor, rijkz (t) is the fourth order 

tensor of relaxation function, and ( * )  denotes 

the Stieltjes convolution between rijk~(t) and 

dei~(t). The dot (.) denotes the derivative with 

respective to time t. For the one dimensional 

isotropic linearly viscoelastic material, Eq. (1) 

can be reduced to 

a(t)= f '=r(t-r)*(r)dr=r(t)  *de(t) (2) 

In the frequency-domain, Eq. (2) can be ex- 

pressed as 

tY ( w) = icoR (w) e(c0) (3) 

where i = ~  is the imaginary unit, co is the 

circular frequency, and a(w), e(co) and R(w)  
are the Fourier transforms of the stress history 

a(t), strain history e(t), and relaxation func- 

tion R ( t ) ,  respectively. 

2.2 Equation of motion 

Consider a uniform straight viscoelastic beam 

of length L, which travels at constant trans- 

port speed c. The equation of motion and the 

relevant boundary conditions can be derived form 

the extended Hamilton's principle (Abolghasemi, 

2003): 

f t ) ' ( 3 K - S V + 3 W ) d t = O  (4) 

where K and V are the kinetic and potential 

energies, respectively, given by 

1 L 
K = ~ f  ° oA{ c2+ (~v+cw') 2 }dx 

(5) 
V=-~ fo'(Mw" + Pw'2) dx 

In Eq. (5), w(x, t) is the transverse deflection, 

pA the mass per length, M the resultant bending 

moment, and P the axial tension. The dot (-) 

and the prime (') denote the partial  derivatives 

with respective to the time t and the spatial 

coordinate x, respectively. The virtual work c~W 

is given by 

~W= foLf (x, t) ~x +M130~+M23& (6) 
+ Ql~w~+ Q2~w2 

where f ( x ,  t) is the external force, and Mr, Q1 
and 01 are the bending moment, the transverse 

shear force, and the slope at x = 0 ,  while Mz, Qz 
and 02 are those at x=L.  The slopes 01 and 02 
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are related to the transverse deflection as 

O~(t)=w'(O, t), & ( t ) = w ' ( L ,  t) (7) 

Introducing Eqs. (5) and (6) into Eq. (4), and 
then applying the integral by parts gives 

t 2 L 

i, "fo [- M"- pA (cZw" + 2cid + u') + Pw" + f (x, t) ] dwdxdt 

+i)2{ O (x, t) 8w I~ + Oa~w1+ Q28w2 }dt (8) 

+f/ '{ - m (x, t) 80 Ig + m ~  + m28& }dt=0 

where M(x,  t) and Q(x, t) are the resultant 
bending moment and the transverse shear force, 
respectively, defined by 

M (x, t) = f a -  azdA 
(9) 

Q(x, t) = M ' + p A c ( f o + c w ' )  +Pw" 

where A represents the cross-sectional area of 
the moving beam. From Eq. (8), the equation of 
motion for the moving viscoelastic beam can be 
obtained as 

I{ R ( t )  * go"" } 
(lO) 

+ pA (c2w" + 2cf~' +~)  - P w " = f  (x, t) 

with the boundary conditions given by 

w(0, t ) : w l  or Q(0, t ) = Q 1  

0(0, t )=01  or M(0, t ) = M a  
(11) 

w(L,  t )=w2 or Q(L,  t ) = - Q z  

0 (L, t) = 02 or M (L, t) =Mz 

Substituting Eq. (2) into Eq. (9) gives the rela- 
tions : 

M(x, t) = I ( R *  zO") 
(12) 

Q(x, t) = I ( R *  w ' )  + pAc(  fo+cw') - Pw" 

3. Spectral Element Formulation 

To formulate the spectral element, the general 
solution of the free vibration problem is repre- 
sented in the discrete Fourier transform (DFT) 
form as 

N--1 

W(X, t ) = ~ ,  Wn(x) e ~°'` (13) 
n = l  

Heve, W,(x) is the spectral components (or 

Fourier coefficients) corresponding to discrete 
frequencies co,=2zcn/T (n=0 ,  1, 2, ..., N - l ) ,  
where N is the number of spectral components 
to be taken into account in the analysis, and T 
is the time window related to N as 

N--- 2f~Q T (14) 

where fw~o is the highest frequency called Ny- 
quist frequency. The spectral components are 
arranged to satisfy Wu_n = W,*, where W* is 
complex conjugate of Wn by the theory of DFT. 
The summation and subscripts used in (13) are 
so obvious that they will be omitted in the fol- 
lowing equations for brevity. 

By substituting Eq. (13) into Eq. (10), with f ( x ,  
t) =0,  one can obtain 

i w R ( w ) I W " " -  ( P - p A c  2) W" 
+ 21wpAc W ' -  pAcozW=O 

(15) 

The general solution of Eq. (15) is assumed in the 
form as 

W (x) : Ce ~x (16) 

where k is the wavenumber. Substituting Eq. (16) 
into Eq. (15) yields a dispersion relation as 

i~oR (w) Ik 4 + ( P -  pA  c 2) k 2 
- 2 w p A c k -  pA w 2=0 (17) 

From Eq. (17), four roots kr ( r = l ,  2, 3, 4) can 
be obtained. Then the general solution of Eq. 
(15) can be expressed in the form 

4 

W (x) = ~ Cre ~x (18) 
r = l  

Now, consider a finite beam element of length l 
as shown in Fig. 1. The spectral nodal degrees of 
freedom (DOFs) are defined by 

wx= w (0), o , =  w'(0) 

wz= w(/), 02=W'(l) 
(19) 

t, r 4 
Fig. 1 Sign convention for the moving finite vis- 

coelastic beam element 
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Substituting Eq. (18) into Eq. (19) gives a 

relation between the spectral nodal DOFs vec- 

tor d and the constants vector C as 

d =  Y ( w) C (20) 

where 

d ={ W~ & W~ O~ }~ 

C={ C~ C~ C~ C, }~ illl l y(co)= el ez e3 e4 
el e2 e3 e4 

el,~a e2E2 e3~3 e4,~4 

(21) 

with the definitions of  

sr=ikr, e~=e ~ (22) 

Assume that the shear force Q (x, t) and bending 

moment M (x, t) can be represented in the DFT 

forms as 

N-1 
Q(x, t )= ~ O. (x)e  ~ t  

n=0 
(23) N-1 

M (x, t) = 57, M. (x) e ~ 
n=0 

Applying Eq. (13) into Eq. (12) and using Eq, 

(23) give the spectral components of Q(x, t) 
and M(x,  t) as follows: 

M(x) =iwR(w) W" 
(24) 

O(x) =icoR(co) W'+ (oAc2-p) W' + icooAcW 

where the subscript n is omitted for brevity. The 

spectral nodal shear forces and bending moments 

shown in Fig. l are defined by 

O~=O(O), M ~ = - M ( O )  
(25) 

Q z = - O ( / ) ,  M2=M(l) 

Substituting Eq. (18) into Eq. (24) and applying 

the results into Eq. (25) yield a relation between 

the nodal forces vector f a n d  the constants vector 

C as 

f = X ( w )  C (26) 

f = {  O1 M1 Q2 M2 }T 

1 - 8 1 - 8 2  -83 -84] 
X(co) = - h i  - h z  -h3 -h4 

elgl  e282 e383 ~4g4 

[elhl e2h2 e3h3 e4h4] 

(27) 

where 

with 

gr = - i [ icoR (co) kS + (pA c 2- P) kr + copAc] 
(28) 

h r :  - -  ico R (co) kZ~ 

The constants vector C can be readily eliminated 

from Eqs. (20) and (26) to obtain the relation 

between the spectral nodal forces vector and the 

spectral nodal DOFs vector as follows : 

f = S (co) d (29) 

where S((o) is the symmetric frequency-depen- 

dent spectral element matrix defined by 

S(co) =X(co)  Y(w) -~ (30) 

Assembling the spectral elements in a complete- 

ly similar way to that used in the conventional 

FEM and then applying the relevant boundary 

conditions yield a global system equation in the 

form : 

Sg (co) dg=fg (31) 

where Sg(w) is the global spectral matrix, de 
the global spectral nodal DOFs vector, and fg 
the global spectral nodal forces vector. 

The eigenvalues can be computed from the 

condition that the determinant of global spectral 

matrix Sg(w) is zero as follows : 

det Ng(w) = 0  (32) 

To obtain the dynamic responses in the t ime- 

domain, we first compute fg from the external 

forces transformed into the frequency-domain by 

using the fo rward -FFT algorithm. Next we solve 

Eq. (31) for dg and apply the results into Eq. 

(20) to compute the spectral components of re- 

sponse from Eq. (18). Finally, based on the DFT 

theory of Eq. (13), the inverse-FFT algorithm 

is used to obtain the vibration response in the 
t ime-domain. One may remind that, because there 

have been made no restriction on R (a)), the spec- 

tral element matrix of Eq. (30) can be applied to 

the moving beams made of any viscoelastic mate- 

rial. 

4. Numer ica l  Resul ts  

and Discuss ion  

Numerical studies have been conducted to 
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evaluate the present spectral element model as 
well as to investigate the effects of viscoelastcity 
and moving speed on the dynamics of moving 
viscoelastic beams. For the numerical studies, two 
beam models shown in Fig. 2 are considered: 
one-span beam (Fig. 2(a)) and two-span beam 
(Fig. 2(b)).  The one-span beam is simply sup- 
ported at both ends and the two-span beam is 
constructed by connecting two equal one-span 
beams so that its total length is twice of the length 
of the original one-span beam. The mid-point 
and the two ends of the two-span beam of are all 
simply-supported. Each span of beam has the 
length L = I  m, width b=0 .2m,  thickness h =  
0.0015 m, and mass density p=7800 kg/m 3. 

As shown in Fig. 3, the viscoelasticity of the 
beam material is represented by the Kelvin-Voigt 
model as 

or(t) = E e ( t )  + ~ ( t )  (33) 

Thus the Fourier transform of the relaxation func- 
tion of the viscoelastic material can be obtained 
from Eq. (33) as (Christensen, 1982) 

icoR (w) = E +  ioJ~ (34) 

For numerical illustrations in the next section, 
Young's modulus E = 2  × 1011 N/m 2 is used while 

varying the magnitude of viscoelasticity ~7- 

Fig. 2 

(a) One-span beam 

(b) Two-spans beam 

Two stationary beams with simply supported 
boundary conditions 

Fig. 3 

E 

[ i i  
q 

Kelvin-Voigt model of the viscoelastic beam 
material 

4.1 Evaluat ion  of  the spectral  e lement  mo- 

del 

The high accuracy of the present spectral ele- 
ment model is verified first by comparing the 
eigenvalues obtained by using the present SEM 
with those by the conventional FEM as well as 
with the exact analytical results from (Karnovsky, 
2001). For this end, we assume that two example 
beams shown in Fig. 2 are stationary (i.e., c : 0  
m/s), but not subject to the axial tension (i.e., 

P = 0 N ) .  
To formulate the finite element model used 

for the FEM results, the displacement fields 
within a finite element of length l are assumed 
as (Petyt, 1990) 

w(x,  t) = N ( x )  d( t )  (35) 

where N (x) is the shape function matrix given by 

/ X \2 / X \3 X 2 
N ( x ) = [ 1 - 3 ~ T  ) + 2 I T )  , X ( T - - l )  , 

(36) 

The finite element equation can be derived in the 
form as 

Md + ( Cc+ Cv) d + K d = f  (37) 

where d and f are the spectral nodal DOFs 
vector and the nodal forces vector defined by 
Eq. (21a) and Eq. (27a), respectively. The finite 
element matrices in Eq. (37) are given by 

156 

k symm 

22l 54 - -13/]  
412 13/ -312 / 

156 - -22/ /  
4l 2 J 

[0 6, 60,],, C a -  pA c  - 6 l  0 61 - l 2 
- 6-|-30-6z 0 

l_ 6l l 2 - -6 l  

12z]I 6VI1 --127] 6~II 
1 I 4rtll 2 --6vll  2vll  2 

C v = ~  12771 -6~I1 / 
k symm 4 7II2 

[ Kll /£12 Kl~ K14] 

ksymm 

(38) 
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where 

K n  = - K l s = K a a =  360 + 3 6 r  - 3 6 s  

K l z = -  K14=Ka4=180+ 3 r l -  3sl 

[~4=6012--  r12+s12 (39) 

Kz2 = - I 4 ~ =  12012 + 4 r l Z - 4 s l  z 

p l  2 p A  cZ l 2 
r=-E-i-' s =  E ~  

Table 1 and Table  2 compare  the lowest three 

eigenvalues (i.e., A1, Az, As) of  the one-span  beam 

and the two-span  beam, respectively, for two 

cases. The  first case is when the viscoelasticity is 

not taken into account (i.e., z2=0) and the second 

case is when the viscoelasticity is taken into 

account (i.e., ~=6 .8  × 10-4E, where E = 2  × 10 xl 

N/mZ).  Physically, r / = 0  means that the beams 

are pure elastic, while r/#:0 means that the 

beams are viscoelastic. For  the SEM results, only 

one finite element is used for one-span  beam 

while two finite elements for two-span  beam. 

Table 1 and Table  2 show that the present SEM 

results are identical to the exact analytical results 

(Karnovsky,  2001). When the beams are pure 

elastic (i.e., ~7=0), the F E M  results indeed con- 

verge to the SEM results or  to the exact analytic- 

al results as the total number  of  finite elements 

increases for both example beams. This is also 

true for the viscoelastic beams with z / = 6 . 8 ×  

10-4E. This observation certainly confirms the 

extremely high accuracy of  the present spectral 

element model. 

Table 1 The lowest three eigenvalues of the simply-supported stationary one-span beam obtained by SEM, 
FEM and the exact theory (Kamovsky, 2001) 

~7 Method N A1 Az As 

Exact 3.444 i 13.777 i 30.998 i 

SEM 1 3.444 i 13.777 i 30.998 i 

6.8 × 10-4E 

FEM 

10 3.444 i 13.800 i 31.014 i 

20 3.444 i 13.778 i 30.999 i 

50 3.444 i 13.777 i 30.998 i 

SEM l --0.025+3.444 i --0.405+13.771 i --2.052+30.930 i 

10 

FEM 

--0.025+3.444 i --0.407+13.794 i --2.055+30.946 i 

20 --0.025+3.444 i --0.405+13.772 i --2.052+30.931 i 

50 --0.025+3.444 i --0.405+13.771 i --2.052+30.930 i 

Note : (1) N = N u m b e r  of finite elements, (2) E = 2 ×  1011N/m z 

Table 2 The lowest three eigenvalues of the simply-supported stationary two-span beam obtained by SEM, 
FEM and the exact theory (Karnovsky, 2001) 

z 2 Method N A~ A2 As 

Exact 3.444 i 5.381 i 13.777 i 

SEM 2 3.444 i 5.381 i 13.777 i 

0 10 3.446 i 5.382 i 13.800 i 

6.8 × 10-4E 

FEM 20 3.444 i 5.381 i 13.778 i 

50 3.444 i 5.381 i 13.777 i 

SEM 2 --0.025+3.444 i --0.062+5.380 i --0.405+ 13.771 i 

10 --0.025+3.445 i --0.062+5.382 i --0.407+13.794 i 

20 --0.025+3.444 i --0.062+5.380 i --0.405+13.772 i 

50 --0.025+3.444 i --0.062+5.380 i --0.405+13.771 i 

FEM 

Note : (1) N = N u m b e r  of finite elements, (2) E = 2 ×  1011N/m 2 
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4.2 Effects  of the moving speed and vis- 

colasticity 
Figures 4(a) and 4 (b) show the dynamic res- 

ponses of the pure elastic one-span beam and the 

viscoelastic one-span beam, respectively, at vari- 

ous moving speeds: c=16 .7m/s ,  c=33 .4m/s ,  

c=36.0  m/s, and c=36.25 m/s. The dynamic re- 

sponse of the pure elastic beam is neutral at 

16.7 m/s, unstable by the divergence at 33.41 

m/s (>cD=33.40 m/s),  neutral at 36.0m/s, and 

T % 
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(b) Viscoelastic beam (r/=6.8 × 10-4E) 

Dynamic responses of the moving one-span beam subject to axial tension P=2.5 kN/m at various 
moving speeds 
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unstable by the flutter at 36.26 m / s  ( >  cF=36.25  

m / s ) ,  where cD and cF denote the divergence 

speed and the flutter speed, respectively. How-  

ever, the dynamics  of  the viscoelastic beam is 

found to be somewhat  different from that o f  the 

pure elastic beam. For instance, the neutral zone 

be low cD becomes stable and the neutral zone 

cD ~ c ~ cF becomes unstable by the flutter due to 

the viscoelasticity effect• 

Figure 5 compares the first natural mode  

1 

0.~ 

0.~ 
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Effect of  viscoelasticity and moving speed on the first and second natural mode shapes of the moving 
viscoelastic one-span beam subject to axial tension P=2.5  kN/m 
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shapes of the moving one-span beam subject to 

the axial tension P = 2 . 5  kN/m,  at four moving 

speeds, depending on the degree of viscoelasticity 
z}: when r j=0  and r} :6 .8×10-4E.  The vis- 

coelasticity tends to slightly distort the original 

natural mode shape of  pure elastic beam (i.e., 

when z} : 0 ) .  The changes of natural mode shapes 

due to the viscoelasticity are found to be relati- 

vely larger at c : 3 6 . 2 5  m/s when compared with 

those at the lower moving speeds. In general, 

however the effect of viscoelasticity on the change 

of natural modes seems to be not so significant. 

5. Conclusions 

In this paper, the spectral element model has 

been developed for the transverse vibration of an 

axially moving viscoelastic beam subject to axial 

tension. The viscoelasticity of the beam material 

was represented in a general form by using the 

one-dimensional constitutive equation of heredi- 

tary integral type of viscoelastic material. The 

present spectral element model was then evaluated 

by comparing its solutions with those obtained 

by the conventional FEM as well as with the 

results by exact theory. Numerical studies were 

conducted to investigate the effects of the moving 

speed and the viscoelasticity on the dynamics and 

natural mode shapes of axially moving viscoelas- 

tic beams. It has been found that the effect of vis- 

coelsticity changes the stability of the viscoelastic 

beam. For  instance, the neutral zone below the 

divergence speed becomes stable and the neutral 

zone below the flutter speed becomes unstable by 

the flutter due to the effect of viscoelsticity. 
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